Taphonomic analysis of archaeomalacological assemblages: shell middens on the northern coast of Santa Cruz (Patagonia, Argentina)

Heidi Hammond
Received 20 August 2013. Accepted 26 March 2014

ABSTRACT

This paper proposes a method of studying archaeomalacological assemblages from shell middens, and describes an application of this method in the analysis of remains recovered from systematic excavations at sites located south of the Ría Deseado estuary (northern coast of Santa Cruz Province, Argentina). This methodology aims to isolate taphonomic variables affecting archaeomalacological records to aid identification of the agents and processes involved in shell midden formation and to improve interpretations of the human activities performed at the sites. These analyses are also relevant to paleoenvironmental and paleoecological reconstructions, and to interpretations of site variability through assessments of assemblage integrity and structure.

Keywords: Archaeomalacology; Taphonomy; Shell middens; Formation Processes; Northern Coast of Santa Cruz.

RESUMEN

ANÁLISIS TAFONÓMICOS DE CONJUNTOS ARQUEOMALACOLÓGICOS: CONCHEROS EN LA COSTA NORTE DE SANTA CRUZ (PATAGONIA, ARGENTINA). En este trabajo se presenta una propuesta metodológica para el estudio de conjuntos arqueomalacológicos de concheros y su aplicación en el análisis de restos recuperados a partir de excavaciones sistemáticas en sitios ubicados al sur de la ría Deseado, en la costa norte de Santa Cruz, Patagonia argentina. Esta metodología se focaliza en el estudio de diferentes variables tafonómicas que afectan el registro arqueomalacológico para avanzar en la interpretación de los agentes y procesos involucrados en la formación de las estructuras de concheros y sobre las actividades humanas desarrolladas en los sitios. Además estos análisis son significativos para realizar interpretaciones paleoambientales, paleoecológicas, así como para evaluar la integridad de los conjuntos, interpretar las características estructurales y la variabilidad de los sitios.

Palabras clave: Arqueomalacología; Tafonomía; Concheros; Procesos de formación; Costa norte de Santa Cruz.

INTRODUCTION

Studies on the northern coast of Santa Cruz Province, Argentina (hereafter NCSC; Figure 1) identified a large number of shell middens distributed along the coast, near the present-day shoreline. Shell middens are located on geomorphological features in areas where food resources such as molluscs and pinniped colonies are abundant (Zubimendi et al. 2005). Shell middens are composed of different archaeological materials in a sedimentary matrix: animal bones (seals, seabirds, fish, and terrestrial mammals, among others), lithic artifacts, charcoal and, primarily, mollusc shells. The shells’ calcareous composition affords them high preservation potential (Waselkov 1987; Orquera and Piana 1999; Aguirre et al. 2009). The study of taphonomic modifications to mollusc shells can provide information about past human activities and formation processes at archaeological sites, as well as paleoenvironmental and paleoecological conditions (Kidwell 1991; Claassen 1998; Aguirre et al. 2011). As such identification of taphonomic variables can clarify the natural and anthropic process that affected archaeological assemblages (Fernández López 1999; Gutiérrez Zugasti 2008).
the west and are strongest during the summer months. Vegetation is of the Patagonian Province of the Andean-Patagonian domain and characterized by shrub steppes composed of grasses and coirones (*Stipa humilis* and *S. speciosa*) and interrupted by patches of *mata negra* shrubs (*Verbena tridens*). Geomorphologically, the San Jorge gulf consists of wide sand or boulder beaches, and rocky tidal flats where mollusc shoals (*restingas*) develop. To the south of the Cabo Blanco area, the Atlantic coast extends to the Ría Deseado estuary and is characterized by beaches and small intertidal zones with some mollusc shoals. The area south of Ría Deseado is geomorphologically variable with large sand and boulder beaches interspersed with porphyritic outcrops of the Bahía Laura Formation. Mollusc shoals develop in this area and species of edible molluscs belonging to the Magellanic Biogeographic Province are available.

Archaeological materials from sites located south of Ría Deseado are used here as case studies. Archaeological records in this area indicate intensive but uneven use by hunter-gatherer populations. Major concentrations of archaeological materials are found in areas where animal resource availability—particularly marine resources—tends to be high (Zubimendi *et al*.

The aim of this paper is to present a methodology for the study of archaeomalacological assemblages. The focus is on identification of taphonomic processes that affect archaeological shells and the method is offered as a preliminary approach to assessing both the integrity of shell middens and the formation processes associated with these features within the study area. Additionally, results of analyses of three archaeomalacological assemblages provide a test case for the proposed methodology. The assemblages were recovered from three archaeological localities on the NCSC: Puerto Jenkins–Puerto Jenkins 2 site (PJ2)–, Bahía del Oso Marino–Las Hormigas site (LH)–, and Isla Lobos–112 site (S112)– (Figure 2).

STUDY AREA

The NCSC study area comprises approximately 420 km of coastline, bounded to the north by the boundary between Chubut and Santa Cruz Provinces, and to the south by the Bahía Laura archaeological locality (Castro *et al*. 2003). The area is characterized by an arid to semiarid climate with average temperatures between 4 °C and 17 °C, and average precipitation of 200 mm, falling largely as winter rain. Predominant winds are from
SHELL MIDDENS

Table 1 provides a contextual description of the shell middens analyzed in this paper. PJ2 is located in the Puerto Jenkins archaeological locality (Figure 2) where numerous shell middens are concentrated near identified mollusc shoals. Middens are found up to 400 m from the modern shoreline (Zubimendi et al. 2004). PJ2, dated to 690 ± 60 years BP, is located 100 m from the Ría Deseado shoreline. LH is located in the Bahía del Oso Marino locality, where shell middens are heterogeneously distributed (Zilio and Hammond 2013). The site is radiocarbon dated to 370 ± 40 years BP and located at 16 masl and 80 m from the present coastline. S112 is located in the Isla Lobos archaeological locality (Castro et al. 2003), where shell middens cluster near the coastline. S112 is located 100 m away from the current shoreline and 11 masl. Fragments of charcoal associated with archaeological materials date to 2870 ± 60 years BP (Table 1).

MATERIALS AND METHODS

Excavation

On the NCSC, shell middens are composed of very thick lenses of archaeological materials, so excavations proceeded in 5-cm artificial levels. According to Bejega García (2010), stratigraphic differences between massive levels of mollusc shells may be based on biological composition where the presence or absence of particular species defines the stratigraphy. Therefore, excavating by artificial levels aids detection of differences in high-density shell lenses that may not be identified otherwise. Recovery of small items was performed using a 2 mm mesh sieve (Claassen 1998), and the “bottom sieve” – the smallest items remaining after sieving – was collected for classification and further analysis in the laboratory (Bowdler 2009).

The following section details the methodology for identification, classification, and quantification of mollusc shells. It also describes different taphonomic agents (Lyman 1994) and lists selected taphonomic variables that should be considered in any taphonomic approach to archaeomalacological assemblages.

<table>
<thead>
<tr>
<th>Archaeological locality</th>
<th>Archaeological site</th>
<th>Age 14C (years BP)</th>
<th>Location</th>
<th>Excavated area (m²)</th>
<th>Stratigraphic thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puerto Jenkins</td>
<td>Puerto Jenkins 2 - PJ2</td>
<td>690 ± 60 (LP-2603)</td>
<td>Aeolian mantle on Holocene terrace</td>
<td>0.5</td>
<td>43</td>
</tr>
<tr>
<td>Bahía del Oso Marino</td>
<td>Los Hornigas - LH</td>
<td>370 ± 40 (LP-2504)</td>
<td>Aeolian mantle on Holocene terrace</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td>Isla Lobos</td>
<td>Site 112 - S112</td>
<td>2870 ± 60 (LP-2141)</td>
<td>Aeolian mantle</td>
<td>0.25</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 1. Description of archaeological sites presented in this paper.
• **Fragments** (FRAG) are pieces of shell that lack diagnostic elements. Fragments can contribute to measures of abundance including NISP, the number of identifiable specimens (complete shells plus fragments), and MNI, the minimum number of individuals for each genus or species. For gastropods, MNI is calculated according to the formula: VCOM + FAPI + INFRA. For bivalves, MNI is calculated as VCOM + FCHC + VFRA (taking the highest value between left and right VFRA; Álvarez Fernández 2007). Fragments are also used to calculate taxonomic richness, defined as the total number of taxa in a collection. Assemblage diversity is the number of identified species or taxa (Claassen 1998; Dupont 2003).

In the NCSC contexts analyzed to date, we have identified three groups of molluscs—gastropods, bivalves, and polycladophorans—using specific literature (Castellanos 1970; Aguirre 2003; Aguirre et al. 2009 and Gordillo 2007 for polyplacophora, among others), and a comparative collection consisting of both modern and archaeological specimens (Bejega García 2010), and following the nomenclature of the World Register Marine Species (WoRMS 2012) database.

2. Biometric analysis

Following taxonomic identification of archaeomalacological assemblages, biometric analysis (length, width, and height) of complete shells is required. Shell size is related to the age of the individual, the microenvironment in which it developed, and ontogenetic growth rate, which decreases as age increases (Claassen 1998). At NCSC shell middens, the most abundant conchological species are *Nacella magellanica* (limpet), *Aulacomya atra* (ribbed mussel), *Mytilus edulis* (blue mussel), and *Perumytilus purpuratus* (Zubimendi et al. 2005; Zubimendi 2012; Hammond and Zubimendi 2013). To gauge shell size, the maximum diameter of the base of the shell is measured in *Nacella magellanica*; in bivalves, maximum diameter is measured from the umbo to the distal end of the shell. Usually, biometric analyses are used to interpret the processes of overexploitation, in studies of growth environments, for estimating season of harvest (Claassen 1998), and to determine whether there may have been size selection during harvesting (Álvarez Fernández 2009). Occasionally these analyses have also been used to explore the mode of harvest, estimate the size of the sampled population, and identify rare or uncommon species at archaeological sites (Claassen 1998).

3. Weight of the remains

The weight of archaeomalacological assemblages is a variable that has been widely discussed by many authors (Claassen 1998, 2000; Mason et al. 1998, 2000; Glassow 2000). Claassen (1998: 107) points out that criticisms of shell weight quantification center primarily on the loss of weight with diagenesis, which affects different species at different rates. The author notes that the older the site or the more acidic the soil, the greater the loss of calcium carbonate and conchiolin and the greater the differential loss of calcium carbonate between species. Álvarez Fernández (2007) indicates that we must consider that different taphonomic agents and processes that could affect archaeomalacological remains and the weight of shells, such as descaling or precipitation of calcium carbonate and matrix acidity. Moreover, Bejega García (2008) notes that despite the limitations of weight for estimating abundance, weight values are still important as they may reflect changes in the shell composition of archaeological levels within a site. In the same way, if a sample is highly fragmented, weight is sometimes the only available criterion of analysis.

Taphonomic agents and taphonomic processes

1. Taphonomic agents

A taphonomic agent is a source of force applied to materials, and the physical cause of modification (Morlan 1984; Lyman 1994). Archaeological materials have their own taphonomic histories, and it is necessary to identify the agents and processes responsible for any signs of modification. Agents that modify materials in the archaeological record have predictable physical effects (Schiffer 1983) that can be inferred (Nash and Petraglia 1987). In this way, taphonomic studies in archaeology contribute to our understanding of the formation of archaeological sites (Borrero 1988).

A variety of taphonomic agents alter the remains that compose shell middens:

- **Biological**: Fauna (both vertebrates and invertebrates) and flora are considered among biological agents. At NCSC, fossorial rodents (*Ctenomys* sp.), Magellanic penguins (*Spheniscus magellanicus*), and armadillos (*Chaetophractus villosus*) are among the animals that modify remains and their spatial arrangements in shell middens by moving and scattering archaeological material. These animals can also introduce foreign remains through the caves they excavate (Hammond et al. 2013). The modern introduction of livestock (sheep) is another factor that disturbs shell middens; trampling causes the removal, displacement, and fragmentation of archaeological remains. Vegetation may also cause movement and mixing of archaeological remains, and root growth in fissures or cracks may fracture shells, all of which can mechanically change the original structure of deposits. Roots between the shells can also trigger chemical dissolution (Gutiérrez Zugasti 2008).
- **Anthropic**: Human populations can modify the archaeological record in several ways, whether deliberately or accidentally. Such modifications can
Taphonomic analysis of archaeomalacological assemblages: shell middens on the northern coast of Santa Cruz (Patagonia, Argentina)

Excavation by non-specialists, construction of roads, urban growth, and the use of vehicles in coastal areas are also agents of archaeological site destruction (Ceci 1984; Zubimendi et al. 2012).

- **Physical-geological:** The primary physical agents affecting shell middens are water and wind. In open-air shell middens, fluvial processes and wind can transport archaeological remains, resulting in the modification of site morphology and structure. Wind erosion, storms, and sudden changes in temperature can accelerate the degradation, fragmentation, and mobilization of the shells (Claassen 1998). Moisture and sunlight are other agents that may alter the remains.

- **Chemicals:** Archaeological remains can be chemically altered according to chemical conditions within the sedimentary matrix. A variety of variables, including pH and the relative proportion of organic matter, phosphate, carbonate and salt, can be studied to assess conservation, pollution, and other chemical processes that affect assemblages. The pH level of the matrix affects the preservation of certain archaeological remains. Stein (1987) suggests that soil pH is affected by the amount of organic waste introduced by people during site occupation. Generally, an abundance of calcium carbonate, of which shells are composed, causes a neutral or slightly alkaline pH, which tends to preserve many organic remains (Orquera and Piana 2000). However, a highly alkaline environment creates unfavorable conditions for the preservation of organic remains such as bone because it induces collagen hydrolysis (Favier Dubois and Bonomo 2008). High salinity and high levels of organic matter within the midden matrix cause a higher incidence of corrosion.

2. **Taphonomic processes on shells**

People and animals are geomorphological agents that produce archaeological sediments, the physical, biogenic, and cultural components of which require identification and interpretation (Butzer 1982: 66). Thus, shell accumulations are considered archaeosediments (Butzer 1982; Stein 1987). The identification of natural and anthropic components is therefore critical to the interpretation of formation processes at archaeological sites. For this reason, analysis of taphonomic processes that have affected archaeological remains is a means of understanding their origins and the changes they have undergone throughout the formation of the archaeological deposit.

Taphonomic variables

- **Preservation of periostracum:** The periostracum is an outer membrane composed of protein that covers the shells of some gastropods and bivalve molluscs (Figure 3A). This membrane is especially visible in the shells of species within the family *Mitilidae,* particularly *Aulacomya atra* and *Mytilus edulis.* This organic layer is secreted by a mantle portion of molluscs, and its main function is to protect the limestone part of the shell against various hazards including acidic substances (Camacho 2007). Preservation of the periostracum on archaeological shells is interpreted as a sign of the record’s integrity and of rapid burial (Zubimendi 2012; Hammond and Zubimendi 2013). Preservation of this membrane in stratigraphic contexts is also determined by conditions within the sedimentary matrix (moisture, organic content, and pH). Under unfavorable conditions of burial, periostracum loss will progress through time. When exposed to environmental conditions (wind, sun, rain, and moisture) the periostracum dries quickly, fractures and falls off easily. The preservation of periostracum is recorded as present (1) or absent (0).

![Figure 3. A. Aulacomya atra shells with preserved periostraca; B. Shells with evidence of surface corrosion; C. Shells with evidence of surface abrasion.](image-url)
• **Corrosion**: Corrosion occurs when calcium carbonate—in the form of calcite or aragonite (Camacho 2007)—or other mineral components of the shell dissolve due to chemical conditions in the environment (Gutiérrez Zugasti 2008; Figure 3B). Chemical erosion first attacks thinner surface areas, which leads to characteristic shapes on particular taxa. Some effects of chemical dissolution of shells are a corroded appearance of surfaces, loss of ornamentation, and thinning and development of holes and cracks (Fernández López 1999: 81). Identification of such alterations can indicate the environmental conditions in the organism’s habitat or deposition matrix. Moreover, corrosion can be inferred from analyses of the substrate where the remains were deposited. Corrosion and dissolution of shells’ mineral components are greater in areas where salinity is high, temperatures are low, and bioturbation is common (Claassen 1998: 59). Chemical dissolution is also related to sediment moisture conditions, climatic fluctuations, and the abundance of vegetation in the substrate (Aguirre et al. 2011). Corrosion is recorded as present (1) or absent (0).

• **Abrasion**: Abrasion refers to the removal of calcium carbonate, of which shells are composed, by physical processes or bioerosion (Claassen 1998). This process leads to weathering of shells’ most prominent exterior ornamentation, modifying their original texture and creating porous surfaces (Figure 3C). Corrosion is abrasion caused by wind (Breed et al. 1997) and its effects vary according to wind speed, hardness of the abraded surface, concentration of abrasive particles (such as sand), and the density and distribution of vegetation and topographic features (Waters 1992). Time of exposure on the land surface is also a factor. Abrasion analysis can provide information regarding sedimentation at the archaeological site, displacement of archaeological remains, and post-depositional processes. It is important to assess abrasion to identify which remains were incorporated in to the site by people, and which by natural processes. For example, small gastropods that form natural coastal cobbles where archaeological sites are sometimes located generally have evidence of marine abrasion and can be integrated as part of the sedimentary matrix of sites. Shell abrasion is recorded as present (1) or absent (0).

• **Deformation**: Deformation refers to changes in the size, shape, structure, and/or texture of shells due to mechanical stress. This process may cause folds, fissures, cracks, or fractures. Sediment pressure may cause deformation of overall shape (Álvarez Fernández 2009). This process is enhanced if the sediment column has high levels of moisture or organic material, which affect the microstructure of the shell and its resistance (Zuschin et al. 2003). At NCSC, deformation has been observed mainly on limpet shells.

• **Fragmentation**: Fragmentation is one of the most common processes observed in archaeomalacological assemblages and involves breakage of shells and separation of the fragments. This process can affect anatomic and taxonomic identification of the remains (Gutiérrez Zugasti 2008). Shells, particularly those of bivalves, tend to fragment along existing features, such as growth and ornamentation lines (Farinati and Zavala 1995). Fragmentation will vary according to the morphology, microstructure, thickness, ornamentation, size and strength of the shell, as well as biostratinomic processes (Claassen 1998; Aguirre et al. 2011). Other factors that may affect the structure of shells and increase fragmentation of an assemblage are exposure to heat (Claassen 1998), decalcification and biodegradation (Gutiérrez Zugasti 2008), and the amount of organic matter and moisture in the sedimentary matrix (Zuschin et al. 2003). Sedimentary processes such as compression (Claassen 1998), and biological (e.g., bioturbation and root action) and natural processes (e.g., effects of water, wind and temperature fluctuations) may also influence increase fragmentation rates. Fragmentation increases the susceptibility of the particles to size sorting and transport by different agents (Claassen 1998: 55). Different anthropic processes can produce fragmentation such as trampling, site cleaning (removal of remains), production of artifacts or instruments, or the mode of shellfish gathering.

• **Thermal alteration**: Heat alters the crystallographic structure of shells. The higher the temperatures they are exposed to, the faster they will deteriorate and, ultimately, break. Shells affected by thermal exposure experience changes in the original color of the surface and weight loss relative to unburned shells (Claassen 1998). For example, limpets that have not been affected by heat are brown whereas those exposed to high temperatures for longer periods are dark gray, often carbonized, and their structure is very weak, which causes them to be easily fragmented (Claassen 1998; Villamarzo 2009), thereby affecting conservation of the entire assemblage. Carbonization is related to the exposure of shells directly to flames, and involves carbon enrichment. Typically, molluscs are covered by a layer of very fine gray sediments (Gutiérrez Zugasti 2008). Thermal alteration of shells is determined by macroscopic appearance and color and recorded as not burned (0), original color (1), burned (2, dark brown to black color); or calcined (3, white color) (Villamarzo 2009; Villagran et al. 2010).

• **Breakage and/or deliberate impact of shells**: It has been suggested that breakage and/or impact on shells may be related to the way some species of molluscs were harvested (Pailier et al. 2007). In particular shell middens at NCSC, many limpet shells are cracked or broken (Figure 4A). These breaks may be due to the use of an instrument to release the molluscs from the rocks where they grow. When a hard blow is delivered to detach a shell, breaks along the margin or side may occur. Classification and recording of impacts and breakage follows Pailier and colleagues (2007). These authors divide shells of the gastropod Nacella magellanaica into eight zones and in three areas in relation to the height of the shell (Figure 4B). By this method, the location of impacts / breakage can be recorded in a way that permits comparison.

• **Bioerosion**: The analysis of bioerosion can provide paleoecological information. Many marine organisms are capable of eroding and modifying shells, for predatory reasons or otherwise (Figure 5). Algae, fungi, foraminifera, bryozoans, bivalves, gastropods, sponges, and barnacles can cause such modifications before and/or after death of the shellfish (Claassen 1998). Some gastropods, particularly
naticid and muricid, drill shells with their radula leaving circular holes with slightly tapered or straight sides (Álvarez Fernández 2009). The holes produced by mollusc drilling can result in either complete perforation or incomplete, “unsuccessful” perforation. Perforations are made in exposed or weak areas of shells; among bivalves, this is usually near the umbo, and among gastropods, near the apex. Drilling facilitates future fracture of shells (Claassen 1998; Zuschin et al. 2003). Completely perforated shells likely entered the deposits dead because of the action of bioeroding organisms to obtain soft tissue or calcium. Sometimes mollusc shells have other epibiont organisms attached to them. Such organisms erode and remove the periostracum, and produce erosion and surface marks. Heavy encrustation occurs on dead organisms’ shells exposed at the water–sediment interface in low-energy habitats (Claassen 1998). It is important to identify these types of marks to avoid confusion with marks produced by humans. Bioerosion studies allow understanding the presence of certain species in the malacological assemblage, which could be incorporated to the site embedded on shells collected by human groups. In the archaeomalacological assemblages of the NCSC, Balanus sp. is the predominant encrusting species (Hammond and Zubimendi 2013). Sometimes the encrustations occur on the inner surface of the shells, which indicates that they were incorporated into the archaeological record after the death of the organism. The presence of encrustations or epibiont organisms can prevent the effects of bioeroders on shell surfaces (Claassen 1998: 40).

• Color preservation: This variable is recorded as an indicator of preservation of the remains. The preservation of color depends primarily on the chemical composition and stability of the pigment that colors the surface, and the mineralogical composition of shell (Claassen 1998). Color loss is determined by different agents. It is important to distinguish the processes involved and their effects because different processes can have similar effects (Lyman 1994: 38). Abrasion, corrosion, and thermal alteration are the main taphonomic processes related to the loss of original shell color, and can significantly affect the surface coloration and ornamentation. Color loss due to sunlight exposure causes shells to acquire a white color superficially. Preservation of original shell color was recorded using the following scale: conservation of the original color (0); partial conservation of the original color (1); total loss of original color (2); total color loss by sun exposure (3) (Figure 6).

Figure 4. A. Shells with evidence of impacts and breaks; B. Segmentation of shells to record the position of impacts and breaks.

Figure 5. Shells with surface bioerosion.
RESULTS

Table 2 presents a characterization of shells identified in each of the middens analyzed in terms of the variables proposed by Favier Dubois and Borella (2007), Zubimendi (2012), and Hammond and Zubimendi (2013). Excavations profiles are presented in Figure 7. Shell middens are located on different geomorphic surfaces: lines of coastal boulders with sandy cover and sandy aeolian mantles. The shell concentration at the PJ2 site is described as having tabular stratigraphic geometry with a high density of shells in contact with each other (bioclast-supported structure). The LH and S112 sites are described as having lenticular geometry affected by erosion and deflation that has exposed the surfaces of archaeological remains. These processes generated mound-shaped accumulations formed by a surface layer of shells redeposited above aeolian sediments that compose the dunes (Hammond et al. 2013). In all three case studies, individual lenses with high-density archaeological remains were identified in the stratigraphic sequence. The surfaces on which the sites are located are horizontal to subhorizontal. During excavations, articulated mussel shells were recorded in LH and S112, and imbricated limpet shells were recorded in situ at PJ2. These features indicate rapid burial without mobilization of the archaeological remains.

Malacological composition of shell middens

Table 3 presents mollusc species NISPs and MNIs for each excavation. Twenty-three species were identified, and some specimens remain unidentified. Most of the species are gastropods and Nacella magellanica is the predominant species in all assemblages. The remaining gastropod species occur in smaller amounts. Of the bivalves, Mytilus edulis, Aulacomya atra and Perumytilus purpuratus predominate; the rest of the species are represented by a few specimens each. Regarding species richness, LH has the highest conchological diversity, while S112 exhibits...
Taphonomic analysis of archaeomalacological assemblages: shell middens on the northern coast of Santa Cruz (Patagonia, Argentina)

The taphonomic analysis of mollusc shells presented here is preliminary and, accordingly, we focus our analysis of taphonomic processes on complete mollusc shells (VCOM).

Preservation of the archaeomalacological remains is uneven at our study sites (Table 5). The main processes that have affected the shells in these assemblages are fragmentation, corrosion, and thermal alteration. Regarding shell color preservation at LH, a very low percentage of the specimens retain their original color (2.2%) and more than half of the assemblage reflects a partial loss of original shell color (68.9%). In the PJ2 and S112 assemblages, almost all of the shells have completely lost their original color, possibly due to high levels of thermal alteration and corrosion. The total loss of color by sun exposure is very low at LH, and was observed primarily among remains exposed on the surface. At LH, a high percentage of shells (primarily Aulacomya atra) retain their periostraca, which may indicate rapid burial and a high-integrity record (Zubimendi and Hammond 2009; Zubimendi 2012; Hammond and Zubimendi 2013).

The PJ2 assemblage has a high incidence of corrosion (99.5%), while the proportion of abraded shells is low in all of the analyzed assemblages. Abrasion is evident on shells that were exposed on the surface and in contact with particles that abraded and polished surfaces.

Thermal alteration among shells from LH, indicate that part of the assemblage was exposed to heat. However, well-preserved shell structures suggest the heat exposure may have been of short duration or the temperature relatively low. At S112, the malacological remains have been severely affected by thermal alteration.

The taphonomic analysis of mollusc shells presented here is preliminary and, accordingly, we focus our analysis of taphonomic processes on complete mollusc shells (VCOM).
alteration. The shell lens was located above a burned layer of sediment, ash and charcoal; the shells’ surfaces are light gray to white (calcined), they have lost the original color, and their crystallographic structure has been altered and deteriorated. During excavation, shells were easily fractured when removed from the sediment. The PJ2 malacological assemblage was also thermally altered, which accounts for the high percentage of shells exhibiting total loss of original color, that are brown (43% burned) or are light gray to white (57% calcined). Also, there is a high percentage of *Nacella magellanica* shells with impacts or breaks, interpreted as anthropic alteration due to the irregularity of the fractures, similarity to other excavated sites, and based on experimental replication. The proportion of shell alterations by other marine organisms (encrustation and perforation) is insignificant, and the primary encrusting species recorded at the sites is *Balanus* sp.

Table 5. Color preservation and taphonomic processes that have affected the malacological remains.

<table>
<thead>
<tr>
<th>Variables analyzed</th>
<th>Puerto Jenkins 2</th>
<th>Las Hormigas</th>
<th>Site S112</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color preservation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Original color</td>
<td>0 (0%)</td>
<td>39 (2.22%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Partial conservation of color</td>
<td>70 (3.6%)</td>
<td>1207 (68.9%)</td>
<td>3 (2%)</td>
</tr>
<tr>
<td>Total color loss</td>
<td>1877 (96.4%)</td>
<td>489 (27.9%)</td>
<td>175 (98%)</td>
</tr>
<tr>
<td>Total color loss by sun exposure</td>
<td>1 (0.1%)</td>
<td>17 (1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Taphonomic variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periostracum conservation</td>
<td>1 (0.1%)</td>
<td>1006 (57.4%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Evidence of corrosion</td>
<td>1939 (99.5%)</td>
<td>649 (37.0%)</td>
<td>118 (66%)</td>
</tr>
<tr>
<td>Evidence of abrasion</td>
<td>6 (0.3%)</td>
<td>8 (0.45%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Evidence of biopreservation</td>
<td>5 (0.3%)</td>
<td>18 (1.03%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Thermal alteration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not burned</td>
<td>0 (0%)</td>
<td>406 (23%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Burned</td>
<td>840 (43%)</td>
<td>1149 (67%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Carbonized</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>178 (100%)</td>
</tr>
<tr>
<td>Total of mollusc shells (VCOM) on which color and taphonomic variables were calculated</td>
<td>1948</td>
<td>1752</td>
<td>178</td>
</tr>
</tbody>
</table>

The archaeomalacological assemblages presented in this paper correspond to single discard events. The shells were in contact with one another (bioclast-supported fabric) at all sites, creating discrete lenses of archaeological remains with good integrity. At LH and S112, deflation and erosion have exposed the archaeological materials, which begin to deteriorate and 73.2% of *P. purpuratus* shells are complete, respectively. Signs of *in situ* fragmentation of *Mytilus edulis* and *Aulacoma atra* shells were observed at LH and S112, which may be the result of trampling and/or sediment compression.

Discussion

The archaeomalacological assemblages presented in this paper correspond to single discard events. The shells were in contact with one another (bioclast-supported fabric) at all sites, creating discrete lenses of archaeological remains with good integrity. At LH and S112, deflation and erosion have exposed the archaeological materials, which begin to deteriorate

![Figure 8. Percentages of complete (VCOM) and fragmented (VFRA) shells of the main species represented at the sites.](image-url)
rapidly when subjected to environmental conditions. At PJ2, the archaeological remains are completely buried, and the site surface was covered by vegetation that fixed the surface sedimentary layer and prevented exposure of the archaeological remains. The integrity of the assemblages is good; burial was likely rapid and archaeological materials appear not to have been scattered. This resulted in the formation of massive archaeological deposits, resistant to disaggregation. At all sites the level of abrasion is low, and evidence of abrasion was observed only on shells found in superficial layers, indicating that they were not exposed to environmental conditions (wind, water effect) for long time.

The taphonomic processes most evident among the assemblages are fragmentation, corrosion, and thermal alteration, although the malacological remains are generally well preserved. At LH, rapid burial preserved periostraca and original color in high proportions (though it should be noted that this is also the youngest site). Articulated mussel shells were found in situ at the three sites, and imbricated limpet shells were found at PJ2. High percentage of corrosion and thermal alteration were also recorded at PJ2, which led to a high percentage of shells exhibiting loss of original color. At S112, shells were severely altered by heat, which made them very weak; bivalve shells in particular have not preserved periostraca neither the original shell color.

Similar trends in fragmentation are observed in all assemblages. *Mytilus edulis* and *Aulacomya atra* shells have the highest percentages of fragmentation, while *Perumytilus purpuratus* and *Nacella magellanica* have higher percentages of complete shells. This could be due to structural and morphological characteristics of the shells themselves, although it must be recognized that different processes (e.g., corrosion, thermal alteration, sediment pressure) can significantly affect their structure and lead to fragmentation. Study of the NCSC shell middens indicates that mussels usually have higher levels of fragmentation than gastropods such as *Nacella magellanica* (Zubimendi 2012; Hammond and Zubimendi 2013). Future studies should incorporate analyses of diagnostic or identifiable (VFRA) mollusc shell fragments to obtain more comprehensive information regarding the processes that have affected the archaeomalacological remains.

Archaeological remains at all three sites are associated with fragments of charcoal and thermally altered sediments, which suggests that the molluscs may have been exposed to heat for cooking and opening the shells of bivalves. At the three shell middens, we also recovered lithic artifacts and faunal remains (generally highly fragmented) in association with the shell lenses and charcoal (Hammond y Zubimendi 2013).

We observed that the predominant taxa in the malacological assemblages are those identified as important foods (*Nacella magellanica*, *Mytilus edulis* and *Aulacomya atra*), which develop on hard substrates in the intertidal zone (Zubimendi et al. 2005). We have also observed low frequencies of various taxa that, because of their small size, cannot be considered as food (for example *Crepipatella dilatata*, *Siphonaria lessoni*, *Kerguelenella lateralis*, *Lothia coppinheri* or *Balanus* sp.). These species are important because they provide information about environmental conditions and site formation processes. These small molluscs may have been deposited in the site as an unintentional by product of particular harvesting techniques, such as collecting in bunches (Orquera and Piana 1999).

CONCLUSIONS

In this paper, we presented a proposal for the study of shell midden archaeomalacological assemblages, and emphasized the importance of taphonomic studies in the identification of agents that modify shells and processes that affect shell midden formation in the study area. Based on the results of our analyses of malacological assemblages at NCSC, we argue that it is possible to infer the agents (natural and anthropic) and processes (pre- and post-depositional) that have produced physical and/or chemical modifications on the shells.

The advantage of our methodological approach to archaeomalacological assemblages is its applicability to different kinds of archaeological records composed of molluscs. Due to their composition, shells are more resistant than other organic remains such as bone (Linse 1992) or wood. Moreover, insights gleaned from the study of archaeomalacological assemblages extends beyond interpreting the records themselves, contributing to discussions of archaeological site formation.

Acknowledgements

I would like to thank A. Castro and M. Zubimendi for their comments and suggestions. I also want to thank L. Zilio who made the figures, and the reviewers and editors whose comments on an earlier draft of this paper helped to improve it.

REFERENCES

Aguirre, M., S. Richiano, M. Álvarez and C. Eastoe 2011 Taphonomic comparison between two bivalves (Mactra and Brachidontes) from Late Quaternary deposits in northern Argentina: Which intrinsic and extrinsic factors prevail under different palaeoenvironmental conditions? Quaternary International 233: 113-129.

Glassow, M. A.

Gordillo, S.

Gutiérrez Zugasti, I.

Hammond, H. and M. A. Zubimendi

Hammond, H., M. A. Zubimendi and L. Zilio

Kidwell, S. M.

Linse, A. R.

Lyman, R. L.

Mason, R., M. Peterson and J. Tiffany

Mason, R., M. Peterson and J. Tiffany

Moreno Nuño, R.

Morlan, R. E.

Muckle, J.

Nash, D. T. and M. D. Petraglia

Orquera, L. and E. Piana
1999 *Arqueología de la región del canal Beagle (Tierra del Fuego, República Argentina)*. Sociedad Argentina de Antropología, Buenos Aires.

Pailler, Y., C. Dupont, Y. Sparfel and A. Leroy

Schiffer, M. B.

Stein, J. K.

Villagran, X. S., A. L. Balbo, M. Madella, A. Vila and J. Estévez

Villamarzo, E.

Waselkov, G. A.
Waters, M. R.

WoRMS

Zilio, L. and H. Hammond

Zubimendi, M. A.

Zubimendi, M. A., L. Mazzitelli and P. Ambrústolo

Zubimendi, M. A., A. S. Castro and E. Moreno

Zubimendi, M. A. and H. Hammond

Zubimendi, M. A., H. Hammond and L. Zilio
2012 Identificación de agentes de alteración del registro arqueológico en la costa norte de Santa Cruz (Patagonia, Argentina): aportes para la conservación del patrimonio. *XIX Congreso Nacional de Arqueología Chilena*. In CD-ROM.

Zuschin, M., M. Stachwitsch and R. Stanton