CALIDAD NUTRITIVA Y PRODUCCIÓN DE DOS ESPECIES MEGATÉRMICAS EN BAJOS ALCALINO-SÓDICOS DE UN ESTABLECIMIENTO DEL PARTIDO DE RAUCH

Alumno: Cristian Ulises Laurenco
Directora: Ing. Agr. (M. Sc.) Sonia Arias
Codirectora: Ing. Agr. (M. Sc.) Celina Inés Borrajo

Práctica Pre Profesional de Integración

Carrera de Ingeniería Agronómica

Facultad de Agronomía

UNIVERSIDAD NACIONAL DEL CENTRO
DE LA PROVINCIA DE BUENOS AIRES

Azul, 5 de diciembre de 2019

República Argentina
Aprobado por:

Docente representante de la Facultad
Presidente del Tribunal Evaluador

Docente de la Facultad
Miembro del Tribunal Evaluador

Docente de la Facultad
Miembro del Tribunal Evaluador

Codirector del Trabajo Director del Trabajo
AGRADECIMIENTOS

- A toda mi familia, en especial a mis padres Inés y César por brindarme la posibilidad de estudiar, por apoyarme en todo momento y por enseñarme a ser una persona responsable, honrada y respetuosa. También agradezco a mis hermanas Marianela y Guillermína por todos los momentos vividos y por alentarme siempre a seguir adelante a pesar de las adversidades. A mi abuelo Antonio, por todos sus consejos y por querer más que nadie que pueda terminar mis estudios.

- A Mariela, mi gran compañera, a la cual le debo gran parte de este logro, por guiar en mis momentos más difíciles y buscar siempre el lado positivo de las cosas. Por bancarse mi mal humor en las instancias de finales, por ser mi sostén y consejera y principalmente por estar siempre a mi lado. También a su familia, especialmente a sus padres, Angélica y Miguel, por tratarme como a un hijo más y por brindarme todo su afecto.

- A mis amigos y amigas: de la infancia, de la secundaria, pero principalmente a los que me dio la universidad, que son muchos y no quiero olvidarme de ninguno. Cada uno de ellos sabe que es parte de este logro y que les agradezco de corazón cada charla y cada mate compartido.

- A mi Directora Sonia Arias y a mi Co-directora Celina Borrajo por todo el tiempo que dedicaron para que yo pueda realizar la tesis, por sus opiniones, correcciones, consejos y buena predisposición.

- A Laura Belsito por todo el apoyo brindado en el final de mi etapa universitaria.

- Al INTA Rauch por prestarnos las instalaciones durante la duración del ensayo y a la Facultad de Agronomía de Azul por darme la posibilidad de estudiar una carrera universitaria, así como a todo su personal docente y no docente.
ÍNDICE GENERAL

ÍNDICE DE TABLAS ... IV
ÍNDICE DE FIGURAS ... V
SIGLAS Y ABBREVIATURAS ... VI
RESUMEN .. VII
INTRODUCCIÓN .. 1
PLANTEO DEL PROBLEMA ... 4
OBJETIVOS .. 5
 Objetivo general ... 5
 Objetivos específicos .. 5
MATERIALES Y MÉTODOS ... 6
 Sitio experimental .. 6
 Características agroclimáticas de la región .. 7
 Siembra del ensayo y diseño experimental ... 9
 Fechas de corte y toma de muestras ... 10
 Toma de muestras ... 11
 Análisis estadísticos ... 13
RESULTADOS Y DISCUSIÓN .. 14
CONCLUSIONES ... 21
BIBLIOGRAFÍA .. 23
ÍNDICE DE TABLAS

Tabla 1. Composición química y %MS de Panicum coloratum y Chloris gayana en dos momentos de corte... 16

Tabla 2. Producción de materia seca por hectárea y relación hoja/tallo de Panicum coloratum y Chloris gayana en dos momentos de corte ... 18

Tabla 3. Estado fenológico de Panicum coloratum y Chloris gayana en dos momentos de corte .. 19
ÍNDICE DE FIGURAS

Figura 4. Precipitaciones medias mensuales históricas en Rauch y ocurridas durante el período del ensayo (Cuartel XIV). Datos cedidos por la Sociedad Rural de Rauch y extraídos de Morales (2018).. 9

Figura 5. Esquema del diseño experimental utilizado. ... 10
SIGLAS Y ABREVIATURAS

ANAVA: Análisis de la Varianza.

CNES: Carbohidratos no estructurales (carbohidratos solubles).

CH: *Chloris gayana* (Grama Rhodes).

CV (%): Coeficiente de variación.

EEM: Error estándar de la media.

FDA: Fibra detergente ácido.

FDN: Fibra detergente neutro.

M1: Primer momento de corte.

M2: Segundo momento de corte.

MS: Materia seca.

PC: *Panicum coloratum* (Mijo Perenne).

PB: Proteína bruta.
RESUMEN

La expansión agrícola en la Cuenca del Salado hacia zonas ganaderas generó la concentración del stock en ambientes con mayores limitaciones productivas. Asimismo, el deterioro o pérdida de especies estivales produjo un déficit forrajero durante el verano. Para cubrir esta deficiencia, se evaluó la introducción de pasturas megatérmicas en bajos alcalino-sódicos, siendo *Chloris gayana* y *Panicum coloratum* las especies más adaptadas a estos ambientes. Con el objetivo de evaluar calidad nutritiva y producción de las especies megatérmicas, se estudió a CH cv. Finecut y PC cv. Klein, en dos momentos de corte, cultivadas en bajos alcalino-sódicos, en un establecimiento de Rauch. La siembra se realizó en un Diseño de Bloques Completos al azar con parcelas divididas en el tiempo como medidas repetidas por momento de corte y tres repeticiones en cada bloque (n=3). Para el análisis de los datos se utilizó el ANAVA y el test de Tukey (α<0,05). La composición química fue similar entre especies pero se diferenció entre momentos de corte. La FDN y FDA para CH y PC presentaron poca diferencia, siendo mayores en el segundo corte. PB y CNES sólo se diferenciaron para momento de corte, siendo mayores en el primero, mientras que el %MS se diferenció entre especies y fue mayor en PC. La producción de MS fue mayor en CH y primer corte, siendo 2.912 y 3.008 kg MS/ha respectivamente, sin interacción entre ambos factores. La relación Hoja/Tallo no se diferenció entre especies ni entre cortes. Los datos de estado fenológico sólo se diferenciaron entre especies presentando PC 42,33% de macollos en estado reproductivo y CH sólo el 6,17%. Se concluye que CH produjo mayor cantidad de MS/ha que PC y mantuvo la mayoría de sus macollos vegetativos. En el primer corte ambas especies produjeron mayor cantidad de MS/ha y de mejor calidad nutritiva.

Palabras claves: megatérmicas, calidad nutritiva, producción.
INTRODUCCIÓN

La Pampa Deprimida es una extensa planicie que forma parte de la pradera pampeana y se ubica dentro de la Provincia de Buenos Aires, ocupando una superficie aproximada de 10 millones de hectáreas. Incluye las áreas denominadas Depresión del Salado al noreste y la Región de Laprida al sudoeste. Limita al norte con la Pampa Ondulada, al sur con el sistema de Tandilia, al oeste con la Pampa Arenosa y al este con el océano Atlántico (Batista et al. 2005; Otondo et al. 2019). El clima es templado, subhúmedo hacia el oeste y húmedo hacia el este (cerca del Atlántico). La escasa pendiente del terreno, el tipo de suelo y los excesos hídricos registrados durante el invierno suelen provocar encharcamientos periódicos e inundaciones en sectores deprimidos. Por otro lado, se registra un balance hídrico negativo hacia el verano que ocasiona períodos de sequía en esa época del año (Damario y Pascale 1988). Los sectores bajos extendidos de la Pampa Deprimida se caracterizan por ser ambientes hidromórficos naturales, donde el proceso de hidromorfismo resulta dominante y muchas veces se encuentra combinado con otros procesos como alcalinización y en forma eventual salinización (Imbellone et al. 2010) y sodificación (hidro y halomorfismo) (Otondo et al. 2019).

En esta región la vegetación predominante es el pastizal natural, ocupando cerca del 75% de su superficie (Baldi et al. 2006; Vervoorst 1967). El mismo se compone de especies C3 y C4, agrupadas en comunidades vegetales que ocupan posiciones más o menos definidas dentro del paisaje. Las especies C3 de producción otoño-invierno-primaveral (OIP), predominan generalmente en los ambientes positivos. En cambio los ambientes bajos o negativos se encuentran dominados principalmente por especies C4, de producción primavero-estivo-otoñal (PEO). En estos ambientes deprimidos aparecen dos comunidades vegetales típicas: la pradera de hidrófitas y la estepa de
halófitas correspondientes a los denominados bajos dulces y bajos alcalino-sódicos, respectivamente. Estos últimos, con una producción de forraje limitada que no supera los 2000 kg MS ha\(^{-1}\) año\(^{-1}\) (Batista et al. 2005; Otondo et al. 2019). En esta región predomina la ganadería de cría y recría bovina, siendo el pastizal natural y las pasturas de gramíneas la base de la alimentación de estos sistemas, cuya productividad, estacionalidad y calidad determinan el manejo de los rodeos (Bandera et al. 2013; Otondo et al. 2019). Debido a esto, las especies megátérminas reúnen características que le confieren la posibilidad de producir en ambientes desfavorables para las especies templadas. En consecuencia, ante condiciones ambientales como temperatura elevada, sequía y salinidad que favorecen la fotorrespiración y reducen el balance de carbono, estas especies tendrían ventajas competitivas por sobre las templadas (Sage 2004).

En este sentido, algunos autores (Moyano 2012; Otondo et al. 2019) han estudiado y propuesto a Grama Rhodes (Chloris gayana) y Mijo Perenne (Panicum coloratum) como las especies megátérminas que presentan mayor potencial de adaptación a los suelos bajos de la Cuenca del Salado. Chloris gayana (CH) tolera valores de salinidad que resultan limitantes para el desarrollo de la mayoría de las especies forrajeras. En la región templada de Argentina, se menciona su buen comportamiento frente a encharcamientos temporarios y tolerancia a bajas temperaturas (Bandera et al. 2013), aunque presenta sensibilidad a heladas (Lus 2012). También posee capacidad para formar estolones, lo que le otorgaría una ventaja respecto al Panicum coloratum (PC) durante el establecimiento (Borrajo et al. 2016). PC por su parte, presenta moderada tolerancia a la salinidad y sodicidad, aunque se destaca por su mayor tolerancia a sequías y heladas (Veneciano 2006); y también a encharcamientos temporarios (Anderson 1972). Además, PC posee la ventaja de la resiembra natural, lo que puede ser una buena opción en planteos de pasturas megátérminas para varios años. Ambas especies se caracterizan por presentar una marcada estacionalidad en su producción,
concentrando su crecimiento en el periodo estival y una marcada disminución del mismo durante el invierno (Stritzler et al. 1998; Veneciano 2006). En la región Cuenca del Salado el rebrote de PC se inicia a principios de octubre, mientras que GR lo hace dos meses más tarde (en diciembre), lo que hace que posea mayor sensibilidad a la competencia con malezas (Otondo et al. 2019). La perennidad de estas especies en la Cuenca del Salado es un tema en estudio, ya que las primeras siembras en ambientes hidro-halomórficos, presentaron pérdida de pasturas ante eventos de encharcamiento prolongado, con remplazo por el pastizal natural, más variable entre sitios en pasturas de CH que PC (Otondo et al. 2019).

Las experiencias llevadas a cabo en centro y norte de la provincia de Buenos Aires con diferentes cultivares de Grama Rhodes (CH) y Mijo Perenne (PC) permiten sugerir que pueden disponerse de 3 a 5 aprovechamientos durante el ciclo de producción, con acumulaciones que varían entre 4.000 y 6.000 kg de MS ha$^{-1}$, distribuidos entre diciembre y abril, dependiendo de las condiciones climáticas (principalmente precipitaciones y temperatura) y fertilización nitrogenada (Bandera et al. 2013). En los bajos alcalino-sódicos de la Depresión del Salado al cabo de 5 años de evaluación, la producción de forraje del pastizal natural típico de estos ambientes no supera los 3.000 kg de MS ha$^{-1}$, mientras que Grama Rhodes cv “Finecut” y Mijo Perenne cv “Klein” alcanzan los 5010 y 5496 kg de MS ha$^{-1}$ (Otondo 2011). Estos datos reflejan el potencial de producción de estas especies en la zona bajo estudio. Sin embargo, existe muy poca información respecto a la calidad nutritiva de estas forrajeras y de cómo varía de acuerdo a su estado fenológico.
PLANTEO DEL PROBLEMA

La Cuenca del Salado es reconocida tradicionalmente por ser una de las principales zonas de cría bovina en la República Argentina. Como resultado de la expansión agrícola hacia zonas que antiguamente eran destinadas a la ganadería, esta actividad quedó relegada a los ambientes con mayores limitaciones productivas, entre los que se incluyen los bajos alcalino-sódicos. En estas zonas, como una alternativa para aumentar la oferta forrajera, ha surgido el reemplazo del pastizal natural conocido como “pelo de chancho” por pasturas de agropiro alargado o la promoción de especies nativas invernales presentes en el banco de semillas. Como resultado de dichas prácticas se ha producido el deterioro o pérdida de especies nativas estivales. Esta realidad, sumada a la pérdida de calidad forrajera característica de las pasturas de agropiro alargado en la época estival y al escaso conocimiento sobre el manejo adecuado de esta especie, ha generado que la oferta forrajera durante el verano se haya vuelto deficiente en los sistemas de producción de cría bovina de la Cuenca del Salado (Otondo et al. 2019). Por otro lado, durante esa época del año los sistemas de cría tienen una demanda creciente de nutrientes ya que las vacas se encuentran con el ternero al pie produciendo leche y los terneros a su vez comienzan a demandar forraje.

Con el objetivo de cubrir la deficiencia forrajera durante la época estival, en los últimos años se ha evaluado la introducción de pasturas megatérmicas. Algunos autores (Moyano 2012; Otondo et al. 2019) han estudiado y propuesto a Grama Rhodes (Chloris gayana) y Mijo Perenne (Panicum coloratum) como las especies megatérmicas que presentan mayor potencial para adaptarse a los suelos bajos de la Cuenca del Salado. Sin embargo, aún existe muy poca información sobre la productividad de estas especies y menos aún sobre su calidad nutritiva (Bandera et al.
Surge entonces la necesidad de generar información útil sobre estos aspectos, asociados a la fenología de las especies en los ambientes bajos de la Cuenca del Salado. El presente trabajo pretende evaluar la calidad nutritiva y la producción de dos cultivares de las especies megatérmicas más promisorias, como *Chloris gayana* cv. Finecut y *Panicum coloratum* cv. Klein, en dos momentos de su estación de crecimiento, cultivadas en bajos alcalino-sódicos de un establecimiento de la Cuenca del Salado.

OBJETIVOS

Objetivo general
Evaluar la calidad nutritiva asociada a la fenología y la producción de *Chloris gayana* cv. Finecut y *Panicum coloratum* cv. Klein en bajos alcalino-sódicos de un establecimiento en Rauch, Cuenca del Salado.

Objetivos específicos
Sobre pasturas de *Chloris gayana* cv. Finecut y *Panicum coloratum* cv. Klein sembradas en un bajo “alcalino-sódico” de un establecimiento en Rauch, Cuenca del Salado, en dos momentos durante el período estival, determinar y comparar:

- La composición química de la MS cosechada.
- La evolución del estado fenológico a través de la clasificación y recuento de macollos.
- La producción de MS/ha.
- La relación hoja/tallo.
- Comparar y relacionar los parámetros físicos y químicos determinados en ambas especies.
MATERIALES Y MÉTODOS

Sitio experimental
Este ensayo se llevó a cabo sobre un bajo alcalino-sódico ubicado en el establecimiento agropecuario “Estancia San Francisco”, próximo a la Estación Egaña, del Cuartel XIV del partido de Rauch (36°56’38,2”S; 59°05’30,2”W), en la Cuenca del Salado, Pampa Deprimida Oriental. Cabe mencionar, que en este ensayo se llevaron a cabo dos prácticas pre profesionales de integración, por lo tanto los datos de las características edafoclimáticas se comparten con las presentadas por Morales (2018).

Para determinar el sitio experimental se utilizaron datos de muestras de suelo obtenidas por Morales (2018), a partir de las cuales se determinaron parámetros edáficos como: pH, conductividad eléctrica (como estimador de salinidad), fósforo disponible, contenido de carbono orgánico, nitrógeno total, relación carbono-nitrógeno (C/N) y textura, según el Manual del SMLA (2004), en el Laboratorio de Análisis de Suelos, de la Facultad de Agronomía de la UNCPBA. Sobre la base de estos datos se identificó el sitio experimental correspondiente a bajos alcalino-sódicos, Natracualfes (datos no presentados disponibles en Morales 2018). Los registros de precipitaciones medias mensuales fueron aportados por la Sociedad Rural de Rauch, las temperaturas mensuales medias por el Centro Regional de Agrometeorología de la Facultad de Agronomía de Azul, U.N.C.P.B.A, mientras que los datos registrados durante el período del ensayo fueron registrados por la EEA Cuenca del Salado.

Características agroclimáticas de la región

En la planta urbana de Rauch la precipitación media anual para el período comprendido entre 1994-2017 fue de 994,5 mm. Siendo febrero el mes más lluvioso y junio, el mes más seco (Figura 2). La temperatura media anual para el periodo 1997-2011 fue de 14,04 ºC, con una temperatura mínima media registrada en el mes de agosto de 2,9 ºC y una temperatura máxima media en el mes de enero de 27,8 ºC (Figura 3).

Durante el periodo de duración del ensayo puede observarse que en los meses de septiembre, octubre y diciembre las precipitaciones fueron menores a la media mensual para el partido de Rauch. Por el contrario, en los meses de noviembre, enero y febrero fueron mayores a la media (Figura 4).

Otro dato importante, son las precipitaciones acumuladas durante el período del ensayo. En este caso, fueron inferiores a la media histórica hasta el mes de enero, donde las intensas lluvias registradas en ese momento revirtieron tal situación y generaron importantes encharcamientos en sectores aledaños a las parcelas del ensayo.

Siembra del ensayo y diseño experimental

Se estudiaron dos especies y cultivares de gramíneas megatérmicas, *Chloris gayana* cv. Finecut y *Panicum coloratum* cv. Klein, durante el período de implantación y crecimiento del primer ciclo productivo. Para ello se utilizó un Diseño de Bloques Completos al Azar (DBCA) con parcelas divididas en el tiempo (figura 5), como medidas repetidas por momento de corte y tres repeticiones en cada bloque (n=3). En el mes de noviembre se realizó la siembra de las parcelas del ensayo a campo, previo control de malezas con glifosato a razón de 3 l ha⁻¹. La siembra fue realizada al voleo. La densidad utilizada fue de 167 semillas viables m⁻² y se complementó con una fertilización de base con 100 kg/ha de fosfato diamónico (Morales 2018).
Figura 5. Esquema del diseño experimental utilizado.

Fechas de corte y toma de muestras
Para diagramar las fechas de corte se tuvieron en cuenta los estudios preliminares realizados por Borrajo et al (2015), que indican que estas especies tienen una temperatura base de crecimiento de 10°C, una suma térmica a la implantación de 800°C y una suma térmica entre rebrotes de 400°C. En base a los cálculos con las temperaturas mensuales medias se planificaron el primer corte hacia fines de febrero (M1) y un segundo corte sobre el rebrote a mediados de mayo (M2). Luego de cada muestreo, se realizó un corte de emparejamiento con motoguadaña a 5 cm de altura para evaluar el rebrote posterior.
Toma de muestras

En cada parcela se cosechó el forraje arrojando dos veces un marco de 0,25 m² y se realizó un corte de material a 5 cm de altura desde el suelo.

Una de las muestras cosechadas de cada parcela se pesó en fresco para determinar producción de biomasa fresca por unidad de superficie y luego se llevó a estufa con circulación de aire forzado a 60°C por 48 horas o hasta lograr peso constante. Una vez secas, las muestras fueron pesadas y se determinó el porcentaje de materia seca y la producción de biomasa por unidad de superficie (kg MS/ha).

Posteriormente, las muestras fueron molidas a 1mm en molino tipo Willey y llevadas al laboratorio para realizar las determinaciones de composición química del forraje cosechado.

Sobre cada una de las muestras se realizaron los siguientes análisis químicos bajo la metodología descripta:

- **Proteína bruta (PB)**, se utilizó el método Kjeldahl (AOAC, 1984) que cuantifica nitrógeno y posteriormente se multiplicó ese valor por el factor 6,25 para expresarlo como porcentaje (%) de proteína bruta (PB).

- **Fibra detergente ácido (FDA) y fibra detergente neutro (FDN)** como estimadores de la pared celular. Se siguió la metodología propuesta por Van Soest et al. (1991).

- **Carbohidratos no estructurales (CNES)** como estimadores del contenido de carbohidratos solubles por el método antrona propuesto por Pichard y Alcalde (1990).
La muestra recolectada con el segundo marco se dividió en dos alícuotas: una alícuota para clasificar los macollos según su estado fenológico, y otra alícuota, para determinar la relación hoja/tallo.

Estado fenológico: se clasificaron y contabilizaron los macollos de acuerdo a su estado fenológico, en las etapas fenológicas primarias: vegetativo ó reproductivo (incluyendo este último: elongación y floración) según la metodología de Moore y Moser (1995).

Para esto se consideró como “macollo vegetativo” al que presentaba solamente hojas y no un tallo verdadero desarrollado; de igual modo se indicó como “macollo en elongación” cuando al palpar con las manos en la zona del tallo verdadero presentaba al menos un nudo detectable. También se registró la presencia de estolones. Finalmente se llamó “macollo en floración” al que se encontraba con la panoja expandida.

Relación hoja/tallo: sobre los macollos de la segunda alícuota, se separó la lámina considerándola como “hoja”, del tallo verdadero y vaina, considerados como “tallo”.

Estas fracciones se secaron en estufa a 60 °C y se calculó dicha relación.
Análisis estadísticos

Los datos de las variables estudiadas se analizaron de acuerdo a un modelo estadísticos para un experimento factorial de dos factores (especie y momento de corte) en un diseño en bloques completos aleatorizados.

En el factor A se designaron las especies con dos niveles: CH y PC, *Chloris gayana* cv. Finecut y *Panicum coloratum* cv. Klein, respectivamente.

En el factor B se ubicaron los momentos de corte con dos fechas M1 y M2, el primer corte el 27 de febrero y el segundo el 20 de mayo.

Modelo estadístico:

\[Y_{ijk} = \mu + \alpha_i + \beta_j + \tau_k + \beta\tau_{jk} + e_{ijk} \]

Donde:

- \(Y_{ijk} \) = ijk-ésima observación en el i-ésimo bloque, que contienen el j-ésimo nivel de A y el k-ésimo nivel de B.
- \(\mu \) = media general
- \(\alpha_i \) = efecto del i-ésimo bloque
- \(\beta_j \) = efecto del j-ésimo nivel del factor A
- \(\tau_k \) = efecto del k-ésimo nivel del factor B
- \(\beta\tau_{jk} \) = es la interacción del j-ésimo nivel del factor A y del k-ésimo nivel del factor B
- \(e_{ijk} \) = error experimental

Para el análisis de los datos se utilizó el paquete estadístico Infostat. Se realizó un análisis de varianza considerando los efectos de especie y momento de acuerdo al diseño experimental utilizado (\(\alpha=0,05 \)). Las medias se compararon con el test de Tukey (\(\alpha<0,05 \)).
RESULTADOS Y DISCUSIÓN

En la Tabla N°1 se presentan los datos de composición química y %MS de las especies Panicum (PC) y Chloris (CH) en dos momentos de corte. No hubo interacción entre especie y momento de corte por lo que se presentan las medias para los factores principales del modelo. El porcentaje de FDN y FDA que estiman el contenido de pared celular de las forrajeras, presentaron poca diferencia entre especies. La FDN no se diferenció y fue en promedio de 71,5%, mientras que la FDA fue mayor (p<0,05) en CH que en PC. Sin embargo, esta diferencia tiene poca relevancia desde el punto de vista nutritivo ya que un forraje con 70% de FDN se asocia a una baja digestibilidad.

En concordancia con estos resultados, Otondo (2011) trabajando con las mismas especies y en los mismos ambientes obtuvo valores similares de FDN (entre 75-80%). Asimismo, Pesqueira et al. (2017) también obtuvieron valores de FDN similares (66,1%) para ambas especies estudiadas en ambientes de bajos evaluadas en su tercer año de producción.

Con respecto al momento de corte, tanto FDN como FDA fueron mayores (p<0,05) en el segundo corte. Esto es lógico de suponer ya que a medida que avanza el estado fenológico de la especie, aumenta su contenido de FDN. Asimismo, dado que el contenido de FDA y FDN se encuentran correlacionados positivamente, es razonable que al aumentar el contenido de FDN que representa la celulosa, hemicelulosa y lignina también aumente su contenido de FDA que estima dos de los componentes anteriores (celulosa y lignina). Analizando el contenido de proteína bruta (%PB), se observó que sólo hubo diferencias con respecto al momento de corte, el cual resultó mayor (p<0,05) para el primer momento respecto del segundo, 15,85 vs 12,35%, respectivamente. Estos resultados son esperables dado las parcelas no fueron fertilizadas con nitrógeno y este nutriente es escaso en estos ambientes. Por lo tanto, es posible que la disponibilidad de nitrógeno disponible en el suelo disminuyera con el
ciclo del cultivo y por lo tanto disminuyera su concentración de PB. Por otro lado, a esto se suma que a medida que avanza el estado fenológico de una especie, su contenido de PB disminuye. Sin embargo, teniendo en cuenta que los contenidos de PB necesarios para sostener un buen funcionamiento ruminal se encuentran entre 12 y 14%, los valores obtenidos en el presente trabajo se pueden considerar buenos, según lo han demostrado distintos autores (Bertram y Chiacchiera 2011; Hoover 1986; Petrucci et al. 2003). En concordancia con estos datos, Bertram y Chiacchiera (2011) encontraron que CH disminuyó el contenido de PB de 18 a 6% con el avance de su estado fenológico. Petrucci et al. (2003) por su parte, trabajando con PC en una localidad de La Pampa, obtuvieron valores decrecientes de PB con el avance del ciclo de producción, registrando valores de 14,3% en diciembre hasta 7,7% en agosto.

En cuanto al contenido de CNES, al igual que para PB, sólo se observaron diferencias significativas con respecto al momento de corte, sin diferenciarse entre especies. Los CNES resultaron mayores \((p<0,05) \) para el primer momento comparado con el obtenido para el segundo (5,39 y 4,06%, respectivamente). Si bien existen diferencias, ambos valores se consideran bajos. Estos valores son levemente inferiores a los publicados por Fernández Mayer (2015) quien evaluó, en INTA Bordenave, parámetros de calidad nutricional, y productivos del PC a los 135 días del nacimiento (como promedio entre el nacimiento y el primer corte de cada tratamiento) y obtuvo valores de CNES de 6%.

Por último, el contenido de Materia Seca (%MS) solo presentó diferencias significativas con respecto a especie, arrojando el valor más alto \((p<0,05) \) para PC (31,93% ± 1,28%) respecto del obtenido para la especie CH (22,48% ± 1,28%). Sin embargo, sería esperable que la MS varíe con el momento de corte al igual que el resto de los parámetros y que estuviera asociado con el avance de la madurez. Si solo observáramos los datos de composición química podemos concluir que en el momento
de corte 1 las especies presentaron mayor calidad desde el aporte de nutrientes que en el corte 2, sin diferencias relevantes entre especies.

Tabla 1. Composición química y %MS de *Panicum coloratum* y *Chloris gayana* en dos momentos de corte

<table>
<thead>
<tr>
<th>Factor</th>
<th>Parámetros</th>
<th>%FDN</th>
<th>%FDA</th>
<th>%PB</th>
<th>%CNES</th>
<th>%MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>70,92</td>
<td>40,70b</td>
<td>13,84</td>
<td>4,32</td>
<td>22,48a</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td>72,08</td>
<td>36,95a</td>
<td>14,36</td>
<td>5,13</td>
<td>31,93b</td>
</tr>
<tr>
<td>Corte</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td></td>
<td>69,09a</td>
<td>36,58a</td>
<td>15,85b</td>
<td>5,39b</td>
<td>27,39</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>73,91b</td>
<td>41,07b</td>
<td>12,35a</td>
<td>4,06a</td>
<td>27,03</td>
</tr>
<tr>
<td>EEM</td>
<td></td>
<td>1,04</td>
<td>0,98</td>
<td>0,95</td>
<td>0,37</td>
<td>1,28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significancia</th>
<th>Especie (E)</th>
<th>Corte (C)</th>
<th>E °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>0,035</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

ab Letras distintas en la misma columna difieren significativamente, Tukey (p < 0,05).

Analizando la Tabla N°2 se puede observar que la producción de materia seca (kg MS/ha) se diferenció estadísticamente tanto entre especies, como entre los distintos momentos de corte y no hubo interacción entre los factores estudiados. En tal sentido, para el factor especie se obtuvo la mayor (p<0,05) producción con CH (2.912 kg MS/ha), respecto del obtenido para PC (1.269 kg MS/ha). Por otro lado, teniendo en cuenta el momento de corte, en el corte de fines de febrero se obtuvo una mayor (p < 0,05) producción que en el corte de mediados de mayo (3.008 y 1.172 kg MS/ha para corte 1 y 2, respectivamente). Los niveles de producción de este ensayo fueron similares o inferiores a los publicados por otros autores en los mismos ambientes. Por ejemplo, Pesqueira et al. (2017) en Chascomús obtuvieron valores de 1.147 y 1.390 kg MS/ha para CH y PC respectivamente, como promedio de cuatro (4) ciclos de crecimiento de ambas pasturas, sin diferenciarse entre especies. Por otro lado, Otondo (2011) en la localidad de Punta Indio obtuvo como valor promedio de cuatro ciclos de
crecimiento evaluados valores de 4.865 kg MS/ha en CH y 5.539 Kg MS/ha en PC, los cuales tampoco se diferenciaron estadísticamente. Si bien en el presente trabajo solo se evaluó 1 ciclo de producción, los valores observados fueron similares a los de Pesqueira et al. (2017) pero menores a los de Otondo (2011). Por otro lado, contrariamente a lo observado en nuestros datos, en los trabajos de estos autores PC tendió a producir más que CH. Esta discrepancia se podría atribuir a la producción de estolones en CH que cubren el suelo y producen nuevos ápices de crecimiento con plantas más grandes. Por su parte, PC no tiene estolones y además florece tempranamente, lo que trae como consecuencia por un lado la dominancia apical del macollo reproductivo, así como también el debilitamiento de los macollos hijos e incluso la mortandad de los mismos. De manera que luego del corte, se encuentran con escasos ápices de crecimiento para rebrotar (Borrajo et al. 2016; Otondo et al. 2019), pudiendo revertirse este raleo con la resiembra natural de PC los siguientes años.

La relación Hoja/Tallo por su parte no presentó diferencias estadísticamente significativas para ninguno de los factores estudiados (Tabla N°2). Si bien no hubo interacción entre especie y corte, es interesante analizar esta variable por especie en los dos momentos de corte. La media en la relación hoja/tallo para los dos cortes fue en CH de 0,94 y 0,54 y en PC de 0,79 y 1,58 para 1er y 2do corte, respectivamente. Esta relación se corresponde con la fenología de las especies forrajeras, dado que con el avance en el estado fenológico la relación hoja/tallo disminuye debido al desarrollo del tallo e inflorescencia en detrimento de la producción de hojas, y como las láminas foliares son las que contienen los tejidos con mayor proteína y digestibilidad, se lo considera un indicador indirecto de la calidad nutritiva. Estas relaciones fueron encontradas en diversas especies forrajeras (Hockensmith et al 1997; Borrajo et al; 2000) y en Panicum coloratum por Ferri et al. (2006). Probablemente, la ausencia de diferencias en esta experiencia fue debido a las diferentes estructuras de crecimiento
entre especies (lo que dificulta su comparación), sumado al alto coeficiente de variación de esta variable que determina que sea necesario un mayor número de muestras para evaluarla. Por ello se observa sólo una tendencia para cada especie entre cortes, donde CH disminuye la relación hoja/tallo en 2do corte asociado a su floración tardía, comparada con PC que es una especie de floración temprana y aumenta la relación hoja/tallo.

Tabla 2. Producción de materia seca por hectárea y relación hoja/tallo de *Panicum coloratum* y *Chloris gayana* en dos momentos de corte

<table>
<thead>
<tr>
<th>Factor</th>
<th>PARAMETROS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg MS/ha</td>
</tr>
<tr>
<td>Especie (E)</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>2.912 b</td>
</tr>
<tr>
<td>PC</td>
<td>1.269 a</td>
</tr>
<tr>
<td>Corte (C)</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>3.008 b</td>
</tr>
<tr>
<td>M2</td>
<td>1.172 a</td>
</tr>
<tr>
<td>EEM</td>
<td>267</td>
</tr>
</tbody>
</table>

Significancia

Especie (E)	Corte (C)	E*C
0,0048 | NS | NS
0,0028 | NS | NS

ab Letras distintas en la misma columna difieren significativamente, Tukey (p < 0,05).

Los datos de estado fenológico de PC y CH en los dos momentos de corte se presentan en la Tabla N°3. En los cuales no hubo interacción entre los factores estudiados. Solamente se diferenció entre especies, donde PC presentó mayor (p<0,05) porcentaje de macollos en estado reproductivo (elongados y florecidos) respecto de CH (42,33% y 6,17%, respectivamente). Por otro lado CH manifestó el mayor (p<0,05) porcentaje de macollos en estado vegetativo (93,83%) respecto del obtenido en PC (57,67%). En CH se registró la presencia de estolones a razón de 3 estolones/0,25 m² en el 1er corte y 31 en el 2do corte, lo que apoya el supuesto de una mayor cantidad de puntos de crecimiento en CH para rebrotar.
Tabla 3. Estado fenológico de *Panicum coloratum* y *Chloris gayana* en dos momentos de corte

<table>
<thead>
<tr>
<th>Factor</th>
<th>ESTADO FENOLÓGICO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% VEGETATIVO</td>
<td>% REPRODUCTIVO</td>
<td></td>
</tr>
<tr>
<td>Especie (E)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>93,83 b</td>
<td>6,17 a</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>57,67 a</td>
<td>42,33 b</td>
<td></td>
</tr>
<tr>
<td>Corte (C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>73,67</td>
<td>26,33</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>77,83</td>
<td>22,17</td>
<td></td>
</tr>
<tr>
<td>EEM</td>
<td>8,16</td>
<td>8,16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significancia</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie (E)</td>
<td>0,0139</td>
<td>0,0139</td>
</tr>
<tr>
<td>Corte (C)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>E*C</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>CV (%)</td>
<td>26,39</td>
<td>82,45</td>
</tr>
</tbody>
</table>

Letras distintas en la misma columna difieren significativamente, Tukey (p < 0,05).

La mayor producción de forraje y calidad nutritiva (menor FDN y FDA y mayor PB y CNES) registrada en el 1er corte respecto al 2do, podría deberse a que las plantas se encontraban creciendo en temperaturas más cercanas a las óptimas para especies megatérmicas, que se da entre 30-45°C (Bandera et al. 2013). Mientras que en Rauch (Figura 3) durante el 2do corte, las temperaturas mínimas y la menor heliofania, podrían haber resentido el crecimiento y desarrollo de estas megatérmicas, que presentan temperaturas mínimas de 10°C (Bandera et al. 2013).

Los datos fenológicos muestran la mayor proporción de macollos reproductivos de PC respecto a CH, acompañando el supuesto de que la dominancia apical pudo provocar una limitación en el macollaje, el crecimiento vegetativo y la producción de forraje durante el primer corte en forma más marcada en PC. Esta situación restringió los ápices de crecimiento activos para iniciar el rebrote, determinando que las plantas quedaran pequeñas y la producción de materia seca del segundo corte sea aún más reducida. Además, la mayor proporción de macollos reproductivos en PC comparado con CH, serían las causantes del mayor %MS, ya que los tallos contienen mayor
cantidad de pared celular y menor de citoplasma con una menor proporción de agua que las hojas.

También hay que destacar en este año de implantación, la mayor producción de MS de CH estaría asociada al desarrollo vegetativo de las plantas y la producción de estolones, estos ayudan a cubrir rápidamente el suelo y a multiplicar los ápices de crecimiento que darán nuevos macollos, con una floración menor y más tardía que evita la mortandad de los mismos.
CONCLUSIONES

En las condiciones en las que se desarrolló la experiencia y comparando los resultados obtenidos entre las dos especies megatérmicas estudiadas en relación a la calidad nutritiva asociada a la fenología, se puede esperar que CH se comporte mejor que PC en los bajos alcalino-sódicos de la Cuenca del Salado durante el año de implantación, dado que permaneció por más tiempo en estado vegetativo y produjo mayor cantidad de MS/ha manteniendo valores interesantes en sus parámetros químicos. En PC por su parte se observó que se indujo rápidamente su estado reproductivo lo cual se comprobó en ambos cortes del período evaluado, y si bien no se observaron mayores diferencias en los datos de composición química si se observó un mayor contenido de materia seca en esta especie. No obstante, estas diferencias podrían revertirse a través de un manejo adecuado del pastoreo en los sucesivos ciclos de crecimiento.

En cuanto a la productividad que presentaron ambas especies megatérmicas en el período evaluado durante el año de implantación, se alcanzó valores similares a lo producido por el pastizal natural propio de dichos ambientes bajos de la Cuenca del Salado, pero teniendo en cuenta que son especies perennes, podría superarlo una vez implantadas. Sin embargo, deben tolerar el período invernal con temperaturas por debajo de las óptimas para la especie, por lo que se recomienda continuar evaluando la productividad de estas especies megatérmicas en el tiempo, a través de un manejo diferencial del pastoreo, dado que por un lado, la floración temprana que presenta PC provoca dominancia apical, limita el macollaje afectando el crecimiento vegetativo y por ende limitando la producción de forraje; en cambio CH puede mantener una buena calidad nutritiva a lo largo del tiempo, así como también colonizar el suelo desnudo gracias a la producción de estolones. Por lo tanto, la conveniencia de utilizar una u otra especie como reemplazo del pastizal natural de estos ambientes alcalino-sódicos
de la Cuenca del Salado dependerá de la perennidad de estas especies, aun no evaluada, y de los objetivos que se plantea el productor, a través de la elección correcta de las categorías del rodeo de cría a emplear para el aprovechamiento de estas pasturas.
BIBLIOGRAFÍA

